Basic

量子叠加(superposition)、量子纠缠(entanglement)、量子干涉(interference)

单个 qubit

基态(Deterministic State)

  • 0\ket{0}
  • 1\ket{1}

\ket{} is called a ket.

叠加态(Superposition State)

φ=a0+b1=(ab)\ket{\varphi}=a\ket{0}+b\ket{1}=\begin{pmatrix}a \\ b\end{pmatrix}

表示:对这个 qubit 进行「测量」操作的时候,有 a2|a|^2 的概率得到 0,有 b2|b|^2 的概率得到 1,其中 a2+b2=1|a|^2+|b|^2=1

两个常见的叠加态:

  • +=12(0+1)\ket{+}=\frac{1}{\sqrt{2}}\left(\ket{0}+\ket{1}\right)
  • =12(01)\ket{-}=\frac{1}{\sqrt{2}}\left(\ket{0}-\ket{1}\right)

其他:

  • ±=12(0±1)\ket{±}=\frac{1}{\sqrt{2}}\left(\ket{0}±\ket{1}\right)
  • 0=12(++)\ket{0}=\frac{1}{\sqrt{2}}\left(\ket{+}+\ket{-}\right)
  • 1=12(+)\ket{1}=\frac{1}{\sqrt{2}}\left(\ket{+}-\ket{-}\right)
  • μ=12(0+i1)\ket{\mu}=\frac{1}{\sqrt{2}}\left(\ket{0}+i\ket{1}\right)
  • ν=12(0i1)\ket{\nu}=\frac{1}{\sqrt{2}}\left(\ket{0}-i\ket{1}\right)

布洛赫球面(Bloch Sphere)

Bloch Sphere

Qubit state: cos(θ/2)0+eiφsin(θ/2)1\cos{\left(\theta/2\right)}\ket{0}+e^{i\varphi}\sin{\left(\theta/2\right)}\ket{1}

Polar angle: θ\theta

Azimuthal Angle: φ\varphi

  • 0:θ=0,φ=0\ket{0}:\theta=0,\varphi=0
  • 1:θ=π,φ=0\ket{1}:\theta=\pi,\varphi=0
  • +:θ=π/2,φ=0\ket{+}:\theta=\pi/2,\varphi=0
  • :θ=π/2,φ=π\ket{-}:\theta=\pi/2,\varphi=\pi
  • μ:θ=π/2,φ=3π/2\ket{\mu}:\theta=\pi/2,\varphi=3\pi/2
  • ν:θ=π/2,φ=π/2\ket{\nu}:\theta=\pi/2,\varphi=\pi/2

单量子门

  • Hadamard Gate - H
  • Identity Gate - I
  • 非门 - X
  • Z Gate - Z
  • S Gate - S (S=ZS=\sqrt{Z})

Every quantum gate must always be reversible.

H=[1111],I=[1001],X=[0110],Z=[1001],S=[100i]H=\begin{bmatrix}1&1\\1&-1\end{bmatrix}, I=\begin{bmatrix}1&0\\0&1\end{bmatrix}, X=\begin{bmatrix}0&1\\1&0\end{bmatrix}, Z=\begin{bmatrix}1&0\\0&-1\end{bmatrix}, S=\begin{bmatrix}1&0\\0&i\end{bmatrix}

  • H0=+H\ket{0}=\ket{+}, H1=H\ket{1}=\ket{-}, H+=0H\ket{+}=\ket{0}, H=1H\ket{-}=\ket{1}
  • HH=IH\cdot H=I
  • I0=0I\ket{0}=\ket{0}, I1=1I\ket{1}=\ket{1}, I+=+I\ket{+}=\ket{+}, I=I\ket{-}=\ket{-}
  • X0=1X\ket{0}=\ket{1}, X1=0X\ket{1}=\ket{0}
  • Z0=0Z\ket{0}=\ket{0}, Z1=1Z\ket{1}=-\ket{1}, Z+=Z\ket{+}=\ket{-}, Z=+Z\ket{-}=\ket{+}
  • S+=μS\ket{+}=\ket{\mu}, S=νS\ket{-}=\ket{\nu}

The phase gate S and Z are 90° and 180° rotations around the vertical axis, often referred to as the z-axis.

The quantum NOT gate X is a 180° rotation around the horizontal axis between the Hadamard states, often referred to as the x-axis.

The Hadamard gate H is a 180° rotation around a diagonal between the x and z axes.

Rx(θ)=[cos(θ/2)isin(θ/2)isin(θ/2)cosθ/2]R_x(\theta)=\begin{bmatrix} \cos(\theta/2) & -i \sin(\theta/2) \\ -i \sin(\theta/2) & \cos{\theta/2} \end{bmatrix}

Rz(φ)=[100eiφ/2]R_z(\varphi)=\begin{bmatrix} 1 & 0 \\ 0 & e^{i\varphi/2} \end{bmatrix}

Entanglement 纠缠

The Bell state is the prototypical example of anentangledstate.

φbell=12(00+11)\ket{\varphi}_{bell}=\frac{1}{\sqrt{2}}\left(\ket{00}+\ket{11}\right)