Problem
You are given an array of non-overlapping intervals intervals
where intervals[i] = [start_i, end_i]
represent the start and the end of the i^th
interval and intervals
is sorted in ascending order by start_i
. You are also given an interval newInterval = [start, end]
that represents the start and end of another interval.
Insert newInterval
into intervals
such that intervals
is still sorted in ascending order by start_i
and intervals
still does not have any overlapping intervals (merge overlapping intervals if necessary).
Return intervals
after the insertion.
Note that you don’t need to modify intervals
in-place. You can make a new array and return it.
https://leetcode.com/problems/insert-interval/
Example 1:
Input:
intervals = [[1,3],[6,9]], newInterval = [2,5]
Output:[[1,5],[6,9]]
Example 2:
Input:
intervals = [[1,2],[3,5],[6,7],[8,10],[12,16]], newInterval = [4,8]
Output:[[1,2],[3,10],[12,16]]
Explanation: Because the new interval[4,8]
overlaps with[3,5],[6,7],[8,10]
.
Constraints:
0 <= intervals.length <= 10^4
intervals[i].length == 2
0 <= start_i <= end_i <= 10^5
intervals
is sorted bystart_i
in ascending order.newInterval.length == 2
0 <= start <= end <= 10^5
Test Cases
1 | class Solution: |
1 | import pytest |
Thoughts
可以用二分法在原区间数组中,找出右端点小于(不等于)start
的最后一个区间(都小于则算 -1),记为 after
。
看 after
之后的区间,逐个与 newInterval
比较,如果与 newInterval
重叠则合并到 newInterval
。最后用 newInterval
替换掉这些区间即可。
虽然查找是 O(log n)
时间,但跟后边的区间判定是否重叠,以及把 newInterval
替换进去可能造成后边的数组元素往前移动,最终时间复杂度还是 O(n)
。
实际上题目没有要求 in-place 插入,那就直接开新数组即可,也就不需要二分查找了,从头开始逐个比较即可。
Code
1 | class Solution: |
依然使用了二分查找,练一下用二分法查找小于目标值的最大的元素。