Problem
You are given an integer array arr
of length n
that represents a permutation of the integers in the range [0, n - 1]
.
We split arr
into some number of chunks (i.e., partitions), and individually sort each chunk. After concatenating them, the result should equal the sorted array.
Return the largest number of chunks we can make to sort the array.
https://leetcode.com/problems/max-chunks-to-make-sorted/
Example 1:
Input:
arr = [4,3,2,1,0]
Output:1
Explanation:
Splitting into two or more chunks will not return the required result.
For example, splitting into[4, 3]
,[2, 1, 0]
will result in[3, 4, 0, 1, 2]
, which isn’t sorted.
Example 2:
Input: arr = [1,0,2,3,4]
Output: 4
Explanation:
We can split into two chunks, such as[1, 0]
,[2, 3, 4]
.
However, splitting into[1, 0]
,[2]
,[3]
,[4]
is the highest number of chunks possible.
Constraints:
n == arr.length
1 <= n <= 10
0 <= arr[i] < n
- All the elements of
arr
are unique.
Test Cases
1 | class Solution: |
1 | import pytest |
Thoughts
设 arr[:i]
已经是一个(或若干个) chunks,即 arr[:i]
刚好包含 0 到 i - 1
这 i 个数字。
从位置 i 开始找最短的 chunk。一个chunk 的特点是其下标区间与元素值区间相等。显然从 i 开始,下标区间下界就是 i,而元素值区间的下界也是 i(因为 arr[:i]
是 chunk)。对于从 i 到 j 的下标区间(i 和 j 都包含),上界是 j,如果 max{arr[i:j+1]} = j
(即元素值区间的上界是 j),则 arr[i:j+1]
是一个区间。所以从 i 开始遇到的第一个满足条件的 j 就可以构成一个最短的 chunk。
Code
1 | class Solution: |