Problem

There is a robot on an m x n grid. The robot is initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]). The robot can only move either down or right at any point in time.

Given the two integers m and n, return the number of possible unique paths that the robot can take to reach the bottom-right corner.

The test cases are generated so that the answer will be less than or equal to 2 * 10⁹.

https://leetcode.com/problems/unique-paths/

Example 1:

case1

Input: m = 3, n = 7
Output: 28

Example 2:

Input: m = 3, n = 2
Output: 3
Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:

  1. Right -> Down -> Down
  2. Down -> Down -> Right
  3. Down -> Right -> Down

Constraints:

  • 1 <= m, n <= 100

Test Cases

1
2
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
solution_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import pytest

from solution import Solution
from solution_math import Solution as SolutionMath


@pytest.mark.parametrize('m, n, expected', [
(3, 7, 28),
(3, 2, 3),

(7, 4, 84),
])
class Test:
def test_solution(self, m, n, expected):
sol = Solution()
assert sol.uniquePaths(m, n) == expected

def test_solution(self, m, n, expected):
sol = SolutionMath()
assert sol.uniquePaths(m, n) == expected

Thoughts

看任意的 i、j,要走到 grid[i][j],需要从上边(grid[i-1][j])或左边(grid[i][j-1])过来,所以记 u[i][j] 为走到 grid[i][j] 的路径总数,显然有:

u[i][j]={1 if i=0j=0u[i1][j]+u[i][j1] otherwise u[i][j]=\begin{cases} 1 & \text{ if } i=0\lor j=0 \\ u[i-1][j]+u[i][j-1] & \text{ otherwise } \end{cases}

u[m-1][n-1] 即为最终结果。

推算过程中只需要保留最新的一行或一列,空间复杂度 O(min{m, n}),时间复杂度 O(m * n)

Code

solution.py
1
2
3
4
5
6
7
8
9
10
11
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
if m < n:
m, n = n, m

u = [1] * n
for i in range(1, m):
for j in range(1, n):
u[j] += u[j-1]

return u[-1]

Math

如果把所有的 u[i][j] 都写下来,很容易发现这就是个斜的杨辉三角,u[i][j] 就对应于杨辉三角中 i + j 行(注意顶行是「行 0」)的 ij 列(同样最左列也是「列 0」)。

可以直接用杨辉三角的计算公式(组合数):

u[i][j]=(i+ji)=(i+j)!i!j!u[i][j]=\binom{i+j}{i}=\frac{(i+j)!}{i!j!}

实际上从 [0][0] 走到 [i][j],一共需要移动 i + j 次,其中有 i 次向下,其余 j 次向右。那么所有的可能路径数量,就等于从 i + j 次移动中,任选 i 次(向下走)的可能数,即 C(i+j, i)

如果 i、j 不是很大,可以直接利用阶乘函数 math.factorial 计算,否则也可以自己展开阶乘公式对分子分母约分之后计算。不妨设 j <= i,可得:C(i+j,i)=(i+1)(i+2)(i+j)1×2××j=(i+1)÷1×(i+2)÷2×(i+3)÷3××(i+j)÷jC(i+j,i)=\frac{(i+1)(i+2)\cdots(i+j)}{1\times 2\times \cdots \times j}=(i+1)\div 1\times(i+2)\div 2\times(i+3)\div 3\times \cdots \times(i+j)\div j。从左向右计算的时候,每次除法都一定能除尽,因为任意连续 n 个自然数中一定有一个是 n 的倍数。

整体时间复杂度为 O(min{m,n}),空间复杂度 O(1)

solution_math.py
1
2
3
4
5
6
7
8
9
10
11
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
if m < n:
m, n = n, m

res = 1
for j in range(n - 1):
res *= m + j
res //= 1 + j

return res