Problem

Given an array of intervals intervals where intervals[i] = [startᵢ, endᵢ], return the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping.

Note that intervals which only touch at a point are non-overlapping. For example, [1, 2] and [2, 3] are non-overlapping.

https://leetcode.com/problems/non-overlapping-intervals/

Example 1:

Input: intervals = [[1,2],[2,3],[3,4],[1,3]]
Output: 1
Explanation: [1,3] can be removed and the rest of the intervals are non-overlapping.

Example 2:

Input: intervals = [[1,2],[1,2],[1,2]]
Output: 2
Explanation: You need to remove two [1,2] to make the rest of the intervals non-overlapping.

Example 3:

Input: intervals = [[1,2],[2,3]]
Output: 0
Explanation: You don’t need to remove any of the intervals since they’re already non-overlapping.

Constraints:

  • 1 <= intervals.length <= 10⁵
  • intervals[i].length == 2
  • -5 * 10⁴ <= startᵢ < endᵢ <= 5 * 10⁴

Test Cases

1
2
class Solution:
def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:
solution_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import pytest

from solution import Solution
from solution2 import Solution as Solution2


@pytest.mark.parametrize('intervals, expected', [
([[1,2],[2,3],[3,4],[1,3]], 1),
([[1,2],[1,2],[1,2]], 2),
([[1,2],[2,3]], 0),

(
[[-70,27],[-41,11],[78,85],[-95,55],[-63,4],[-96,38],[33,65],[-16,38],[-43,15],[-69,-7],[64,67],[-33,97],[58,74],[75,83],[87,94],[-64,20],[-77,-7],[48,65],[-80,3],[-10,61],[71,87],[75,82],[-79,-34],[-67,50],[-13,4],[34,42],[-50,-12],[32,51],[-73,40],[18,87],[-16,74],[-27,75],[15,60],[-15,63],[-70,57],[-6,57],[-77,85],[59,94],[38,73],[18,25],[-57,36],[88,95],[72,98],[38,40],[-73,9],[-27,60],[79,92],[-77,47],[47,67],[86,96],[16,44],[37,54],[37,76],[-92,-81],[90,92],[77,84],[-88,5],[26,64],[13,26],[-42,-36],[-96,60],[98,100],[92,94],[94,100],[63,70],[-41,-22],[6,38],[-53,-5],[35,79],[49,50],[-46,-15],[90,93],[-45,63],[20,48],[-50,-30],[17,85],[-9,97],[-97,-12],[43,96],[-4,64],[-34,60],[29,87],[-90,-59],[46,81],[-77,86],[56,86],[-30,-24],[-39,-37],[-17,44],[-40,-1],[71,81]],
79
),
])
class Test:
def test_solution(self, intervals, expected):
sol = Solution()
assert sol.eraseOverlapIntervals(intervals) == expected

def test_solution2(self, intervals, expected):
sol = Solution2()
assert sol.eraseOverlapIntervals(intervals) == expected

Thoughts

先对所有区间排序,排序后按顺序处理,判定是否 overlap 才比较快。按区间的右端点排序。

求最少移除的区间数,等同于求最多剩余的区间数,正向角度看更顺一些。

设区间总数为 n,对于 0 <= i < n,记录以 intervals[i] 为最后一个区间的条件下,最多互不重叠的区间数,记为 c[i]

关键点是 c[i] 对应于「区间 i 一定被留下」。在思考的时候很容易会觉得「去掉区间 i 可能剩余的区间数更多」,导致在这里犹豫。实际上如果区间 i 确实应该被移除,前边还有 c[i-1]c[i-2] 等等。

接下来看区间 i + 1,它的右端点一定大于等于前边所有区间的右端点,只需要比较左端点就能确定它是否与前边的某个区间有重叠。由于前边的区间都已经按右端点排序了,如果某个区间跟区间 i + 1 有重叠,那排在它后边的所有区间都与区间 i + 1 重叠。

对于某个区间 p(0 <= p <= i),如果它与区间 i + 1 重叠,则不存在 p 和 i + 1 都留下的方案,记为区间总数是 0。如果不重叠,那么同时留下 p 和 i + 1 的方案一共有 c[p] + 1 个区间。还有一种可能是前 i 个区间都不要,只留 i + 1,则共有 1 个区间。

设最后一个不与 i + 1 有重叠的区间为 j。即所有的 0 <= p <= j,区间 p 与 i + 1 不重叠。所有的 j < p <= i,区间 p 与 i + 1 重叠。

由此可以得出 c[i + 1] 的算式为:

c[i+1]=max{1,c[p]+10pj}c[i+1]=\max\{1,c[p]+1\mid 0\le p \le j\}

最终从 c[0]c[n-1] 中取最大,就是最多剩余的区间数,和区间总数的差值记为最少移除的区间数。

时间复杂度 O(n²),空间复杂度 O(n)

太慢了。

对于 0 <= p <= j,并不需要每个都计算一次。考虑加一个记录值 res[i],表示「前 i 个区间,最多互不重叠的区间数」。显然 res[i] 等于 c[0]c[i] 的最大值。

可见 res[j]=max0pjc[p]res[j] = max_{0\le p\le j}{c[p]},从 O(n) 的求最大值计算降到 O(1) 的直接查表。

所以:

{c[i+1]=max{1,res[j]+1}res[i+1]=max{c[i+1],res[i]}\begin{cases} c[i+1]=\max\{1,res[j]+1\} \\ res[i+1]=\max\{c[i+1],res[i]\} \end{cases}

唯一的问题是需要确定 j 的值,显然可以对 intervals[0]intervals[i] 用二分法求出。

最后结果取 n - res[n - 1]

时间复杂度 O(n log n),其中排序和遍历都是 O(n log n)。空间复杂度还是 O(n)

Code

solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from typing import List


def bin_find_max_le(intervals: list[list[int]], end: int, val: int) -> int:
"""Finds the maximal position i in `intervals[0:end]`, where `intervals[i][1] <= val`, using binary search.
`intervals[:][1]` are ordered, but may contain duplicate values.
Returns `-1` if val is smaller than all `intervals[:][1]`.
"""
l = 0
r = end - 1
while l <= r:
m = (l + r) >> 1
if (t := intervals[m][1]) == val:
while m < r and intervals[m+1][1] == val:
m += 1
return m
elif t > val:
r = m - 1
elif val >= intervals[r][1]:
return r
else:
l = m + 1

return l - 1


class Solution:
def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:
n = len(intervals)
intervals.sort(key=lambda interval: interval[1])

counts = [1] * n
results = [1] * n
for i in range(1, n):
start = intervals[i][0]
j = bin_find_max_le(intervals, i, start)
if j >= 0:
counts[i] = max(counts[i], results[j] + 1)
results[i] = max(counts[i], results[i - 1])

return n - results[n - 1]

Faster

可能因为一直在想动态规划,导致思维定势了。回头再看这个递推的算式,即使从数学角度,也发现不需要这么麻烦。重新看一下这个式子:

{c[i+1]=max{1,res[j]+1}res[i+1]=max{c[i+1],res[i]}\begin{cases} c[i+1]=\max\{1,res[j]+1\} \\ res[i+1]=\max\{c[i+1],res[i]\} \end{cases}

res[i + 1] 的算式中,把 c[i + 1] 代入,可得:

res[i+1]=max{1,res[j]+1,res[i]}res[i+1]=\max\{1,res[j]+1,res[i]\}

首先跟 c 没关系了,其次显然有 1 <= res[j] <= res[i],于是:

res[i+1]={res[i] if res[j]<res[i]res[i]+1 if res[j]==res[i]res[i+1]=\begin{cases} res[i] & \text{ if } res[j] < res[i] \\ res[i]+1 & \text{ if } res[j] == res[i] \end{cases}

其中 res[j] < res[i] 成立的条件是,intervals[j+1]intervals[i] 中有被保留的区间,即区间 i + 1 与某个被保留的区间有重叠。

因此跟踪记录最新的 res 值,以及当前最后一个被保留的区间的右端点位置,如果区间 i + 1 会覆盖此位置,就直接丢弃,否则就保留。

开始以为是动态规划,其实是贪心法,也就是对于子问题 intervals[0:i+1],区间 i + 1 是否保留的选择,跟整个问题 intervals[0:n-1] 是一致的。

虽然总的时间复杂度还是 O(n log n),但遍历部分下降到 O(n),还是能快一些。如果用 in-place 排序,附加的空间复杂度降为 O(1)

solution2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
from typing import List


class Solution:
def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:
n = len(intervals)
intervals.sort(key=lambda interval: interval[1])

res = 1
right = intervals[0][1]
for i in range(1, n):
start, end = intervals[i]
if start >= right:
right = end
res += 1

return n - res