Problem
There is an integer array nums
sorted in ascending order (with distinct values).
Prior to being passed to your function, nums
is possibly rotated at an unknown pivot index k
(1 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,5,6,7]
might be rotated at pivot index 3
and become [4,5,6,7,0,1,2]
.
Given the array nums
after the possible rotation and an integer target
, return the index of target
if it is in nums
, or -1
if it is not in nums
.
You must write an algorithm with O(log n)
runtime complexity.
https://leetcode.com/problems/search-in-rotated-sorted-array/
Example 1:
Input:
nums = [4,5,6,7,0,1,2], target = 0
Output:4
Example 2:
Input:
nums = [4,5,6,7,0,1,2], target = 3
Output:-1
Example 3:
Input:
nums = [1], target = 0
Output:-1
Constraints:
1 <= nums.length <= 5000
-10^4 <= nums[i] <= 10^4
- All values of
nums
are unique. nums
is an ascending array that is possibly rotated.-10^4 <= target <= 10^4
Test Cases
1 | class Solution: |
1 | import pytest |
Thoughts
算是 153. Find Minimum in Rotated Sorted Array 的微量进阶版。
在二分的过程中,如果当前子数组已经是完全有序的(nums[l] < nums[r]
),直接按二分法继续搜索即可。
否则,根据 problem 153 也可以知道子数组的最小值(或最大值)在哪半边。
不妨设最小值在右半边,那么左半边是 nums[l]
到 nums[m]
的有序子数组,而右半边的值要么大于 nums[m]
要么小于 nums[r]
。看 target
和这三个值的大小关系,便可以确定下一步应该在哪个半边继续搜索。
各种情况如下图示(L = nums[l], M = nums[m], R = nums[r]
)。
其中 t1、t3、t6、t7 四种情况下,需要进入左半边,而 t2、t4、t5、t8 情况需要进入右半边。每种情况的判定条件根据图示可以确定下来。
Code
1 | from typing import List |
这里 while
循环的条件可以直接用 while l <= r
(problem 153 用的是 while l < r - 1
加收尾处理)。