Problem

There is an integer array nums sorted in ascending order (with distinct values).

Prior to being passed to your function, nums is possibly rotated at an unknown pivot index k (1 <= k < nums.length) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]] (0-indexed). For example, [0,1,2,4,5,6,7] might be rotated at pivot index 3 and become [4,5,6,7,0,1,2].

Given the array nums after the possible rotation and an integer target, return the index of target if it is in nums, or -1 if it is not in nums.

You must write an algorithm with O(log n) runtime complexity.

https://leetcode.com/problems/search-in-rotated-sorted-array/

Example 1:

Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4

Example 2:

Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1

Example 3:

Input: nums = [1], target = 0
Output: -1

Constraints:

  • 1 <= nums.length <= 5000
  • -10⁴ <= nums[i] <= 10⁴
  • All values of nums are unique.
  • nums is an ascending array that is possibly rotated.
  • -10⁴ <= target <= 10⁴

Test Cases

1
2
class Solution:
def search(self, nums: List[int], target: int) -> int:
solution_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
import pytest

from solution import Solution


@pytest.mark.parametrize('nums, target, expected', [
([4,5,6,7,0,1,2], 0, 4),
([4,5,6,7,0,1,2], 3, -1),
([-1], 0, -1),
])
class Test:
def test_solution(self, nums, target, expected):
sol = Solution()
assert sol.search(nums, target) == expected

Thoughts

算是 153. Find Minimum in Rotated Sorted Array 的微量进阶版。

在二分的过程中,如果当前子数组已经是完全有序的(nums[l] < nums[r]),直接按二分法继续搜索即可。

否则,根据 problem 153 也可以知道子数组的最小值(或最大值)在哪半边。

不妨设最小值在右半边,那么左半边是 nums[l]nums[m] 的有序子数组,而右半边的值要么大于 nums[m] 要么小于 nums[r]。看 target 和这三个值的大小关系,便可以确定下一步应该在哪个半边继续搜索。

各种情况如下图示(L = nums[l], M = nums[m], R = nums[r])。

其中 t1、t3、t6、t7 四种情况下,需要进入左半边,而 t2、t4、t5、t8 情况需要进入右半边。每种情况的判定条件根据图示可以确定下来。

Code

solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
from typing import List


class Solution:
def search(self, nums: List[int], target: int) -> int:
l, r = 0, len(nums) - 1
while l <= r:
m = (l + r) >> 1
if nums[m] == target:
return m
elif (nums[l] <= target < nums[m]) or (nums[l] > nums[m] and (nums[l] <= target or target < nums[m])):
r = m - 1
else:
l = m + 1

return -1

这里 while 循环的条件可以直接用 while l <= rproblem 153 用的是 while l < r - 1 加收尾处理)。