Problem
You are given an integer n
and a 2D integer array queries
.
There are n
cities numbered from 0
to n - 1
. Initially, there is a unidirectional road from city i
to city i + 1
for all 0 <= i < n - 1
.
queries[i] = [u_i, v_i]
represents the addition of a new unidirectional road from city u_i
to city v_i
. After each query, you need to find the length of the shortest path from city 0
to city n - 1
.
There are no two queries such that queries[i][0] < queries[j][0] < queries[i][1] < queries[j][1]
.
Return an array answer
where for each i
in the range [0, queries.length - 1]
, answer[i]
is the length of the shortest path from city 0
to city n - 1
after processing the first i + 1
queries.
https://leetcode.cn/problems/shortest-distance-after-road-addition-queries-ii/
Example 1:
Input:
n = 5, queries = [[2,4],[0,2],[0,4]]
Output:[3,2,1]
Explanation:After the addition of the road from 2 to 4, the length of the shortest path from 0 to 4 is 3.
After the addition of the road from 0 to 2, the length of the shortest path from 0 to 4 is 2.
After the addition of the road from 0 to 4, the length of the shortest path from 0 to 4 is 1.
Example 2:
Input:
n = 4, queries = [[0,3],[0,2]]
Output:[1,1]
Explanation:After the addition of the road from 0 to 3, the length of the shortest path from 0 to 3 is 1.
After the addition of the road from 0 to 2, the length of the shortest path remains 1.
Constraints:
3 <= n <= 10^5
1 <= queries.length <= 10^5
queries[i].length == 2
0 <= queries[i][0] < queries[i][1] < n
1 < queries[i][1] - queries[i][0]
- There are no repeated roads among the queries.
- There are no two queries such that
i != j
andqueries[i][0] < queries[j][0] < queries[i][1] < queries[j][1]
.
Test Cases
1 | class Solution: |
1 | import pytest |
Thoughts
这是 3243. Shortest Distance After Road Addition Queries I 的进阶版,增加了限制条件,任意两条道路不会交叉。
因为道路不会交叉,设有一条道路 [u, v]
,那么城市 u
和 v
之间的城市(即 [u+1, u+2, ..., v-2, v-1]
)就都可以忽略掉(因为对于任何 u < i < v
,从城市 i
出发,不可能一步走到 v
之后)。所有的道路都加好之后,剩下的城市就是从 0
走到 n-1
的必经点,剩余城市个数减去一就是距离。
记录从城市 i 出发,一步可以走到的最远的城市为 f[i]
。初始时 f[i] = i + 1
。
初始的时候,集合中有所有城市。增加一条道路 [u, v]
时,如果 u
已经不在集合中或者 v <= f[u]
,则这条道路对于缩短距离没有帮助,直接忽略。否则就把集合中所有 u < i < v
的城市 i
都删掉。删的时候不需要遍历 u
到 v
的所有值,因为现在集合中只有 f[u], f[f[u]], ..., f[...f[u]] < v
,依次删掉这些即可。
把 f[u]
从集合中删掉,并继续看 f[f[u]]
,直到走到 v
就停止,然后将 f[u]
的值更新为 v
。
附加的空间复杂度 O(n)
。时间复杂度 O(n + q)
,因为除了遍历所有 query 之外,相当于每个城市都加入再移出集合各一次。
写代码的时候不用真的创建一个包含所有城市的集合,再逐个去掉没用的。实际上当城市 i 从集合中删除后,f[i]
就没用了,可以给 f[i]
赋一个非法值(如 n
)表示被删除了。而剩余城市的数量可以在每次去掉某个城市时直接减去一(循环逻辑保证不会多次去掉同一个城市)。
Code
1 | class Solution: |