Problem
You are given an integer n and a 2D integer array queries.
There are n cities numbered from 0 to n - 1. Initially, there is a unidirectional road from city i to city i + 1 for all 0 <= i < n - 1.
queries[i] = [uᵢ, vᵢ] represents the addition of a new unidirectional road from city uᵢ to city vᵢ. After each query, you need to find the length of the shortest path from city 0 to city n - 1.
There are no two queries such that queries[i][0] < queries[j][0] < queries[i][1] < queries[j][1].
Return an array answer where for each i in the range [0, queries.length - 1], answer[i] is the length of the shortest path from city 0 to city n - 1 after processing the first i + 1 queries.
https://leetcode.cn/problems/shortest-distance-after-road-addition-queries-ii/
Example 1:
Input:
n = 5, queries = [[2,4],[0,2],[0,4]]
Output:[3,2,1]
Explanation:
After the addition of the road from 2 to 4, the length of the shortest path from 0 to 4 is 3.
After the addition of the road from 0 to 2, the length of the shortest path from 0 to 4 is 2.
After the addition of the road from 0 to 4, the length of the shortest path from 0 to 4 is 1.
Example 2:
Input:
n = 4, queries = [[0,3],[0,2]]
Output:[1,1]
Explanation:
After the addition of the road from 0 to 3, the length of the shortest path from 0 to 3 is 1.
After the addition of the road from 0 to 2, the length of the shortest path remains 1.
Constraints:
3 <= n <= 10⁵1 <= queries.length <= 10⁵queries[i].length == 20 <= queries[i][0] < queries[i][1] < n1 < queries[i][1] - queries[i][0]- There are no repeated roads among the queries.
- There are no two queries such that
i != jandqueries[i][0] < queries[j][0] < queries[i][1] < queries[j][1].
Test Cases
1 | class Solution: |
1 | import pytest |
Thoughts
这是 3243. Shortest Distance After Road Addition Queries I 的进阶版,增加了限制条件,任意两条道路不会交叉。
因为道路不会交叉,设有一条道路 [u, v],那么城市 u 和 v 之间的城市(即 [u+1, u+2, ..., v-2, v-1])就都可以忽略掉(因为对于任何 u < i < v,从城市 i 出发,不可能一步走到 v 之后)。所有的道路都加好之后,剩下的城市就是从 0 走到 n-1 的必经点,剩余城市个数减去一就是距离。
记录从城市 i 出发,一步可以走到的最远的城市为 f[i]。初始时 f[i] = i + 1。
初始的时候,集合中有所有城市。增加一条道路 [u, v] 时,如果 u 已经不在集合中或者 v <= f[u],则这条道路对于缩短距离没有帮助,直接忽略。否则就把集合中所有 u < i < v 的城市 i 都删掉。删的时候不需要遍历 u 到 v 的所有值,因为现在集合中只有 f[u], f[f[u]], ..., f[...f[u]] < v,依次删掉这些即可。
把 f[u] 从集合中删掉,并继续看 f[f[u]],直到走到 v 就停止,然后将 f[u] 的值更新为 v。
附加的空间复杂度 O(n)。时间复杂度 O(n + q),因为除了遍历所有 query 之外,相当于每个城市都加入再移出集合各一次。
写代码的时候不用真的创建一个包含所有城市的集合,再逐个去掉没用的。实际上当城市 i 从集合中删除后,f[i] 就没用了,可以给 f[i] 赋一个非法值(如 n)表示被删除了。而剩余城市的数量可以在每次去掉某个城市时直接减去一(循环逻辑保证不会多次去掉同一个城市)。
Code
1 | class Solution: |




