Problem
You are given 2 positive integers l
and r
. For any number x
, all positive divisors of x
except x
are called the proper divisors of x
.
A number is called special if it has exactly 2 proper divisors. For example:
- The number 4 is special because it has proper divisors 1 and 2.
- The number 6 is not special because it has proper divisors 1, 2, and 3.
Return the count of numbers in the range [l, r]
that are not special.
https://leetcode.cn/problems/find-the-count-of-numbers-which-are-not-special/
Example 1:
Input:
l = 5, r = 7
Output:3
Explanation:
There are no special numbers in the range[5, 7]
.
Example 2:
Input:
l = 4, r = 16
Output:11
Explanation:
The special numbers in the range[4, 16]
are 4 and 9.
Constraints:
1 <= l <= r <= 10^9
Test Cases
1 | class Solution: |
1 | import pytest |
Thoughts
「特殊数」就是质数的平方。相当于先求出 [l', r']
内质数的个数,其中 、。
判断自然数 n 是不是质数,需看所有的 2 <= i <= √n
,n 能否被 i 整除,时间复杂度 O(√n)
。
如果已经有了所有小于等于 √n
的质数集合,可以遍历已知的质数,看能否被 n 整除,时间复杂度约为 。
根据 质数定理 可知,n 以内的质数个数为 。
判断连续多个自然数是否是质数,可以考虑把已知的质数保存起来。
判断 [l', r']
内质数的个数,如果不缓存已知的质数表,需要时间大约是 。如果要用质数表,需要从 1 开始构建,需要的时间大约是 。
粗估下来,对于限定的 1 <= l <= r <= 10^9
范围,当 r' > l' + 10
时,从 1 开始构建质数表就更划算。
Code
1 | from math import ceil |
在 LeetCode 上提交的话,一个可选的作 bú 弊 shì 方案是把质数表缓存到 Solution.nonSpecialCount
之外,甚至直接提前先算好整个质数表(上限取 即可),并进一步计算出所有的 (小于 n 的质数个数),在 Solution.nonSpecialCount
里用常数时间计算 即可。
1 | from math import ceil |