Problem

You are given an array of k linked-lists lists, each linked-list is sorted in ascending order.

Merge all the linked-lists into one sorted linked-list and return it.

https://leetcode.com/problems/merge-k-sorted-lists/

Example 1:

Input: lists = [[1,4,5],[1,3,4],[2,6]]
Output: [1,1,2,3,4,4,5,6]
Explanation: The linked-lists are:

1
2
3
4
5
[
1->4->5,
1->3->4,
2->6
]

merging them into one sorted list:
1->1->2->3->4->4->5->6

Example 2:

Input: lists = []
Output: []

Example 3:

Input: lists = [[]]
Output: []

Constraints:

  • k == lists.length
  • 0 <= k <= 10⁴
  • 0 <= lists[i].length <= 500
  • -10⁴ <= lists[i][j] <= 10⁴
  • lists[i] is sorted in ascending order.
  • The sum of lists[i].length will not exceed 10⁴.

Test Cases

1
2
3
4
5
6
7
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def mergeKLists(self, lists: List[Optional[ListNode]]) -> Optional[ListNode]:
solution_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import pytest

from node import ListNode
from solution import Solution


@pytest.mark.parametrize('lists, expected', [
([[1, 4, 5], [1, 3, 4], [2, 6]], [1, 1, 2, 3, 4, 4, 5, 6]),
([], []),
([[]], []),

(
[
[55, 197, 202, 272, 456, 514, 529, 838, 888, 890, 918, 996],
[133, 272, 387, 431, 522, 729, 770, 817, 900, 902],
[35, 100, 175, 324, 416, 439, 658, 824, 886, 989],
[15, 57, 108, 127, 189, 313, 405, 489, 499, 516, 608, 628, 687, 742, 853, 925],
[111, 132, 209, 244, 264, 291, 317, 380, 470, 481, 490, 635, 688, 889, 946, 986],
[76, 83, 332, 427, 596, 612, 660, 673, 764, 844, 964, 978, 997, 999],
[5, 18, 146, 244, 344, 402, 420, 470, 549, 686, 697, 708, 768, 778, 802, 876],
[58, 153, 290, 352, 386, 535, 638, 777, 826, 829, 852, 894, 937, 947],
[190, 192, 367, 426, 453, 469, 563, 594, 654, 699, 792, 828, 857, 942, 960, 992, 1000],
[3, 94, 115, 175, 393, 400, 423, 465, 521, 526, 674, 844, 872, 885, 919],
],
[
3, 5, 15, 18, 35, 55, 57, 58, 76, 83, 94, 100, 108, 111, 115, 127, 132, 133, 146, 153, 175, 175, 189, 190,
192, 197, 202, 209, 244, 244, 264, 272, 272, 290, 291, 313, 317, 324, 332, 344, 352, 367, 380, 386, 387,
393, 400, 402, 405, 416, 420, 423, 426, 427, 431, 439, 453, 456, 465, 469, 470, 470, 481, 489, 490, 499,
514, 516, 521, 522, 526, 529, 535, 549, 563, 594, 596, 608, 612, 628, 635, 638, 654, 658, 660, 673, 674,
686, 687, 688, 697, 699, 708, 729, 742, 764, 768, 770, 777, 778, 792, 802, 817, 824, 826, 828, 829, 838,
844, 844, 852, 853, 857, 872, 876, 885, 886, 888, 889, 890, 894, 900, 902, 918, 919, 925, 937, 942, 946,
947, 960, 964, 978, 986, 989, 992, 996, 997, 999, 1000,
]
),
(
[
[5, 7, 10, 24, 29, 32, 34, 35, 35, 43, 53, 55, 55, 58, 69, 89, 92, 94, 100],
[0, 1, 4, 6, 7, 8, 14, 29, 31, 42, 45, 56, 73, 74, 75, 79, 79, 86, 92, 100],
[0, 2, 25, 28, 33, 37, 44, 51, 58, 69, 72, 73, 77, 81, 84, 100],
[18, 43, 50, 56, 65, 67, 69, 79, 96, 96],
[1, 2, 5, 12, 31, 31, 54, 60, 76, 79],
[3, 14, 28, 32, 55, 56, 65, 68, 81, 93, 95],
[2, 7, 22, 24, 27, 30, 33, 40, 46, 69, 70, 72, 78, 84, 94, 97, 97, 97, 100],
[1, 5, 7, 9, 10, 17, 25, 35, 38, 39, 41, 50, 57, 79, 84, 93, 94],
[3, 6, 7, 9, 15, 20, 24, 26, 28, 33, 38, 43, 47, 54, 58, 62, 77, 79, 81, 96],
[6, 6, 19, 21, 37, 38, 42, 44, 59, 62, 70, 80, 91, 96, 100],
[0, 3, 7, 7, 8, 14, 15, 37, 40, 75, 78, 84, 93],
[10, 21, 26, 31, 41, 64, 68, 77, 78, 100],
[4, 15, 17, 27, 28, 30, 32, 35, 35, 36, 37, 44, 48, 76, 88],
],
[
0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 10, 10, 10,
12, 14, 14, 14, 15, 15, 15, 17, 17, 18, 19, 20, 21, 21, 22, 24, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 28,
28, 29, 29, 30, 30, 31, 31, 31, 31, 32, 32, 32, 33, 33, 33, 34, 35, 35, 35, 35, 35, 36, 37, 37, 37, 37, 38,
38, 38, 39, 40, 40, 41, 41, 42, 42, 43, 43, 43, 44, 44, 44, 45, 46, 47, 48, 50, 50, 51, 53, 54, 54, 55, 55,
55, 56, 56, 56, 57, 58, 58, 58, 59, 60, 62, 62, 64, 65, 65, 67, 68, 68, 69, 69, 69, 69, 70, 70, 72, 72, 73,
73, 74, 75, 75, 76, 76, 77, 77, 77, 78, 78, 78, 79, 79, 79, 79, 79, 79, 80, 81, 81, 81, 84, 84, 84, 84, 86,
88, 89, 91, 92, 92, 93, 93, 93, 94, 94, 94, 95, 96, 96, 96, 96, 97, 97, 97, 100, 100, 100, 100, 100, 100,
]
),
])
class Test:
def test_solution(self, lists, expected):
sol = Solution()
lists = [self._build_list(l) for l in lists]
head = sol.mergeKLists(lists)
assert self._format(head) == expected

def _build_list(self, values: list[int]) -> ListNode | None:
root = ListNode()
node = root
for v in values:
node.next = node = ListNode(v)

return root.next

def _format(self, head: ListNode | None) -> list[int]:
values = []
while head is not None:
values.append(head.val)
head = head.next

return values

Thoughts

21. Merge Two Sorted Lists 的进阶版。但如果直接套用,时间复杂度是 O(k * n),其中 n 是结果链表的总长度。因为结果链表的每个节点,都需要在 k 个数中比较得到。

大量的比较是重复的,因为排头的 k 个节点,每次只会更新一个。

这是最小堆的典型使用场景。

拿 k 个链表的头节点做成大小为 k 的最小堆,堆顶就是值最小的节点。从堆顶拿到最小值,把对应链表的下一个节点替换进来,恢复堆。如果堆顶的链表已经处理完了,就按普通的 remove-min 逻辑处理,把堆的最后一个节点替换过来,然后恢复堆。

时间复杂度为 O(n log k),因为结果链表中的每个节点,只需要 O(log k) 时间恢复堆。

关于最小堆:直接用数组存储。i 节点(0 <= i < k)的父节点下标为 (i - 1) // 2,左子节点为 2 * i + 1,右子节点为 2 * i + 2。0 节点就是堆顶。内部节点的的下标范围是 [0, k // 2 - 1],叶子节点的下标范围是 [k // 2, k)

Code

solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from typing import List, Optional

from node import ListNode

# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next


class MinHeapMerger:
def __init__(self, heads) -> None:
self.store = list(filter(None, heads))
self._build()

def size(self):
return len(self.store)

def pop(self):
root = self.store[0]
if root.next is not None:
self.store[0] = root.next
elif len(self.store) > 1:
self.store[0] = self.store.pop()
else:
return self.store.pop()

self._shift_down(0)
return root

def _build(self):
leaf = len(self.store) >> 1
for i in range(leaf - 1, -1, -1):
self._shift_down(i)

def _shift_up(self, pos: int):
"""Shifts store[pos] up to proper new position."""
while pos > 0:
parent = (pos - 1) >> 1
if self.store[parent].val > self.store[pos].val:
self.store[parent], self.store[pos] = self.store[pos], self.store[parent]
pos = parent
else:
return

def _shift_down(self, pos: int):
"""Shifts store[pos] down to proper new position."""
n = len(self.store)
leaf = n >> 1
while pos < leaf:
left = (pos << 1) + 1
right = left + 1
child = right if right < n and self.store[right].val < self.store[left].val else left
if self.store[pos].val > self.store[child].val:
self.store[pos], self.store[child] = self.store[child], self.store[pos]
pos = child
else:
return


class Solution:
def mergeKLists(self, lists: List[Optional[ListNode]]) -> Optional[ListNode]:
root = node = ListNode()
merger = MinHeapMerger(lists)
while merger.size() > 0:
node.next = node = merger.pop()
return root.next