Problem

You are given an integer array height of length n. There are n vertical lines drawn such that the two endpoints of the ith line are (i, 0) and (i, height[i]).

Find two lines that together with the x-axis form a container, such that the container contains the most water.

Return the maximum amount of water a container can store.

Notice that you may not slant the container.

https://leetcode.com/problems/container-with-most-water/

Example 1:

case1

Input: height = [1,8,6,2,5,4,8,3,7]
Output: 49
Explanation: The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.

Example 2:

Input: height = [1,1]
Output: 1

Constraints:

  • n == height.length
  • 2 <= n <= 10⁵
  • 0 <= height[i] <= 10⁴

Test Case

1
2
class Solution:
def maxArea(self, height: List[int]) -> int:
solution_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import pytest

from solution import Solution
from solution2 import Solution as Solution2


@pytest.mark.parametrize('height, expected', [
([1,8,6,2,5,4,8,3,7], 49),
([1,1], 1),

([1,8,6,2,5,4,8,25,7], 49)
])
class Test:
def test_solution(self, height, expected):
sol = Solution()
assert sol.maxArea(height) == expected

def test_solution2(self, height, expected):
sol = Solution2()
assert sol.maxArea(height) == expected

def test_solution2_simple(self, height, expected):
sol = Solution2()
assert sol.maxArea_simple(height) == expected

Thoughts

对于 1i<jn\forall 1 \le i < j \le n,第 i、j 两个竖线围起来的面积为 areai,j=(ji)×min{hi,hj}area_{i,j}=(j-i)\times\min\{h_i,h_j\}

直接遍历所有的 i、j,找到最大值即可,时间复杂度 O(n²),空间复杂度 O(1)

显然太慢了,需要降低时间复杂度。

实际上以任意两个竖线围成一个容器,该容器的高度一定跟两个竖线中较矮的那个一致,称这条竖线为该容器的等高边,称该容器为这条竖线的等高容器。

竖线 i 左侧存在等高容器,当且仅当 1j<i,hjhi\exists 1\le j<i, h_j\ge h_i,面积为 (ij)×hi(i-j)\times h_i

竖线 i 右侧存在等高容器,当且仅当 i<kn,hkhi\exists i<k\le n, h_k\ge h_i,面积为 (ki)×hi(k-i)\times h_i

计算所有竖线的最大等高容器(有可能没有)的面积,其中最大的那个就是题目要求的最大容器的面积。

时间复杂度还是 O(n²)

以左侧最大等高容器为例,怎么更快的遍历完所有竖线呢?

从第一条竖线开始往右遍历,当前为竖线 i。这时候再从第一条竖线开始往右,遇到高度大于等于 hᵢ 的线时停止。可以记录前 i - 1 条竖线的最大高度,如果小于 hᵢ 则直接跳过。

这种裁剪的效果聊胜于无,还是要看怎么更快地确定符合 hjhih_j\ge h_i 的最小的 j。

刚才是要从 1 一直递增遍历到 j。其中有一些是不必要的比较,比如那些比自身左侧竖线矮的线,就不需要比较了。

可以记录下从左到右见到的每一个历史新高,形成一个有序数组,再用二分法在它们中寻找 j。

如果当前竖线是 i,那么这个辅助数组的元素是 {j1p<j<i,hp<hj}\{j|\forall 1\le p<j<i,h_p<h_j\}

时间复杂度小于 O(n log n),空间复杂度 O(n)

Code

solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from typing import List


class Solution:
def maxArea(self, height: List[int]) -> int:
max_left_area = self._max_left_area(height)
height.reverse()
max_right_area = self._max_left_area(height)
return max(max_left_area, max_right_area)

def _max_left_area(self, heights: List[int]) -> int:
n = len(heights)
max_area = 0

# $\forall j\in fences,\forall 1\le p< j,h_p< h_j$
fences = [0]
max_height = heights[0]
for i in range(1, n):
h_i = heights[i]
if max_height < h_i:
fences.append(i)
max_height = h_i
continue

j = self._find_min_ge(fences, heights, h_i)
max_area = max(max_area, (i - j) * h_i)

return max_area

def _find_min_ge_slow(self, fences: List[int], heights: List[int], h: int) -> int:
for j in fences:
if heights[j] >= h:
return j

def _find_min_ge(self, fences: List[int], heights: List[int], h: int) -> int:
"""Finds the minimal j, where j in fences, and heights[j-1] < h <= heights[j].

Constraints:

- heights[fences[-1]] >= h
"""
l, r = 0, len(fences) - 1
while l <= r:
m = (l + r) >> 1
if (m_h := heights[fences[m]]) == h:
return fences[m]
elif m_h < h:
l = m + 1
else:
r = m - 1

return fences[l] if heights[fences[l]] > h else fences[l + 1]

Improve

先看最两边的竖线 i = 1、j = n 围起来的容器 Ci,jC_{i,j},是所有可能容器中最宽的,其高度为 hi,j=min{hi,hj}h_{i,j}=min\{h_i,h_j\}

其他容器的宽度一定比这个窄,只有当高度更高时,才有可能比 Ci,jC_{i,j} 面积大。

假设 hihjh_i\le h_j,看 i 右边的竖线,如果 hi+1hih_{i+1}\le h_i,那么 Ci+1,jC_{i+1,j} 的面积只会更小。

从 i + 1 开始向依次右找,如果能找到一个 k(i < k < j),hk>hih_k > h_i,用竖线 k 和 j 围起来的容器 Ck,jC_{k,j} 高度更高,面积有可能更大一些。

用同样的方法在竖线 k、j 之间继续一个一个找到高度更高的容器,直到两个竖线重合。

在找到过的所有容器(从最宽最矮,到最窄最高)中,面积最大的那个就是题目所求的容器。

整体只需要对所有竖线从两头往中间遍历一次,时间复杂度 O(n),空间复杂度 O(1)

代码有两版实现,其中 maxArea 的逻辑复杂一些,但计算量小很多(仅在需要时计算容器面积),速度更快。maxArea_simple 逻辑更直接,但会计算每一个遇到的容器面积,速度略慢。

solution2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from typing import List


class Solution:
def maxArea(self, height: List[int]) -> int:
edges = [0, len(height) - 1] # Current container's left and right edge index.
moving = 0 # 0: moving left edge; 1: moving right edge.
h = 0 # Current container's height.
h_fixed = 0 # The not-moving edge's height.
steps = (1, -1)
max_area = 0
while edges[0] < edges[1]:
if (h_moving := height[edges[moving]]) <= h:
edges[moving] += steps[moving]
continue

if h_moving > h_fixed:
h, h_fixed = h_fixed, h_moving
moving = 1 - moving
else:
h = h_moving

max_area = max(max_area, (edges[1] - edges[0]) * h)

return max_area

def maxArea_simple(self, height: List[int]) -> int:
i, j = 0, len(height) - 1
max_area = 0
while i < j:
area = (j - i) * min(height[i], height[j])
max_area = max(max_area, area)
if height[i] < height[j]:
i += 1
else:
j -= 1

return max_area