Problem

An image smoother is a filter of the size 3 x 3 that can be applied to each cell of an image by rounding down the average of the cell and the eight surrounding cells (i.e., the average of the nine cells in the blue smoother). If one or more of the surrounding cells of a cell is not present, we do not consider it in the average (i.e., the average of the four cells in the red smoother).

problem

Given an m x n integer matrix img representing the grayscale of an image, return the image after applying the smoother on each cell of it.

https://leetcode.cn/problems/image-smoother/

Example 1:

case1

Input: img = [[1,1,1],[1,0,1],[1,1,1]]
Output: [[0,0,0],[0,0,0],[0,0,0]]
Explanation:
For the points (0,0), (0,2), (2,0), (2,2): floor(3/4) = floor(0.75) = 0
For the points (0,1), (1,0), (1,2), (2,1): floor(5/6) = floor(0.83333333) = 0
For the point (1,1): floor(8/9) = floor(0.88888889) = 0

Example 2:

case2

Input: img = [[100,200,100],[200,50,200],[100,200,100]]
Output: [[137,141,137],[141,138,141],[137,141,137]]
Explanation:
For the points (0,0), (0,2), (2,0), (2,2): floor((100+200+200+50)/4) = floor(137.5) = 137
For the points (0,1), (1,0), (1,2), (2,1): floor((200+200+50+200+100+100)/6) = floor(141.666667) = 141
For the point (1,1): floor((50+200+200+200+200+100+100+100+100)/9) = floor(138.888889) = 138

Constraints:

  • m == img.length
  • n == img[i].length
  • 1 <= m, n <= 200
  • 0 <= img[i][j] <= 255

Test Cases

1
2
class Solution:
def imageSmoother(self, img: List[List[int]]) -> List[List[int]]:
solution_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
import pytest

from solution import Solution


@pytest.mark.parametrize('img, expected', [
([[1,1,1],[1,0,1],[1,1,1]], [[0,0,0],[0,0,0],[0,0,0]]),
([[100,200,100],[200,50,200],[100,200,100]], [[137,141,137],[141,138,141],[137,141,137]])
])
class Test:
def test_solution(self, img, expected):
sol = Solution()
assert sol.imageSmoother(img) == expected

Thoughts

遍历所有格子计算即可。

可以的优化点(减少一些重复计算),先不考虑边界,设当前在计算某行第 j 列的格子,可以记录 sₗsₘsᵣ 分别表示 j-1jj+1 三列中,上中下三个格子的和。那么下一步处理 j+1 列时,只需要丢弃 s_l,算出 j+2 列的三数之和,跟 sₘsᵣ 相加再求均值即可。

不过没有太大必要,还是会有很多边界条件的判定一直跟着。如果真要减少不必要的边界判定,可以对边界单独处理,然后中间的区域就完全不用判断是否越界。

Code

solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from typing import List


class Solution:
def imageSmoother(self, img: List[List[int]]) -> List[List[int]]:
m = len(img)
n = len(img[0])
res = [[0] * n for _ in range(m)]

g = lambda x, y: img[x][y] if 0 <= x < m and 0 <= y < n else None
neighbors = (
(-1, -1), (-1, 0), (-1, 1),
(0, -1), (0, 1),
(1, -1), (1, 0), (1, 1),
)

for i in range(m):
for j in range(n):
s = img[i][j]
c = 1
for ud, lr in neighbors:
v = g(i+ud, j+lr)
if v is not None:
s += v
c += 1

res[i][j] = s // c

return res